MultiVerse Converter Calculator2025-04-30T08:49:25-04:00

The

MultiVerse Converter: Ver 2 By: Bernard Aybout

This calculator utilizes local storage cookies to preserve your calculation history. This feature allows the calculator to restore your previous data each time you reopen it. However, it’s important to remember to clear or reset the history after each use. Please be aware that if you’re using this calculator on a public computer, others may be able to view your calculation history if it’s not properly cleared.

Financial Calculator

Calculator

History

    Expenses Pie Chart

    Income vs Expenses Pie Chart

    Amortization Chart

    Loan Chart

    Mortgage Chart

    MultiVerse Converter

    MultiVerse Converter: Ver 2 By: Bernard Aybout

    Converting...

    APR vs. EAR

    Annual Percentage Rate (APR): APR is the annual rate charged for borrowing or earned through an investment. It includes any fees or additional costs associated with the transaction.

    Effective Annual Rate (EAR): EAR is the actual return on an investment or the actual cost of borrowing when compounding is taken into account. It reflects the true interest rate for a full year.

    Amortization Schedule

    Conversion History

    MultiVerse Converter – Calculator

    The MultiVerse Converter – Calculator is a versatile and user-friendly online tool designed to simplify conversions and calculations across a wide array of units and financial scenarios. This powerful tool is ideal for students, professionals, and everyday users who need quick and accurate conversions between different measurement systems, as well as a robust set of financial calculations and standard mathematical functions.

    Key Features:

    Unit Conversions:

    • Length Conversions:
      • Kilometers, Meters, Centimeters, Millimeters, Inches, Feet, Miles
    • Weight Conversions:
      • Kilograms, Grams, Pounds, Ounces
    • Temperature Conversions:
      • Celsius, Fahrenheit, Kelvin
    • Volume Conversions:
      • Liters, Milliliters, Cubic meters, Cubic centimeters, Gallons, Quarts, Pints, Cups
    • Area Conversions:
      • Square kilometers, Square meters, Square centimeters, Square millimeters, Hectares, Acres, Square miles, Square feet, Square inches
    • Time Conversions:
      • Seconds, Minutes, Hours, Days, Weeks, Months, Years

    Standard Mathematical Operations:

    • Basic Arithmetic: Addition (+), Subtraction (-), Multiplication (*), Division (/)
    • Percentage (%): Calculate percentages
    • Parentheses: Group operations using parentheses

    Scientific Functions:

    • Trigonometric Functions: Sine (sin), Cosine (cos), Tangent (tan), Arc Sine (asin), Arc Cosine (acos), Arc Tangent (atan)
    • Logarithmic Functions: Natural logarithm (log)
    • Square Root (√): Calculate the square root of a number
    • Exponentiation (x^y): Raise a number to the power of another number
    • Absolute Value (abs): Compute the absolute value
    • Factorial (!): Calculate the factorial of a number

    Financial Calculations:

    • Loan Calculation:
      • Inputs: Principal Amount, Annual Interest Rate (%), Loan Term (Years)
      • Output: Monthly loan payment
    • Amortization Schedule:
      • Inputs: Principal Amount, Annual Interest Rate (%), Loan Term (Years)
      • Output: Detailed amortization schedule including monthly payments, interest, principal, and remaining balance
    • Simple Interest Calculation:
      • Inputs: Principal Amount, Annual Interest Rate (%), Time Period (Years)
      • Output: Simple interest earned or owed
    • Compound Interest Calculation:
      • Inputs: Principal Amount, Annual Interest Rate (%), Times Compounded per Year, Time Period (Years)
      • Output: Compound interest earned or owed
    • Retirement Savings Calculation:
      • Inputs: Current Savings, Annual Contribution, Annual Interest Rate (%), Years until Retirement
      • Output: Estimated retirement savings
    • Mortgage Calculation:
      • Inputs: Home Price, Down Payment, Annual Interest Rate (%), Loan Term (Years)
      • Output: Monthly mortgage payment
    • Budget Calculation:
      • Inputs: Total Income, Housing, Utilities, Food, Transportation, Entertainment, Insurance, Medical, Education, Other Expenses
      • Output: Total expenses, savings, and detailed breakdown of each category
      • Automatic Budget Generation: Based on marital status and number of dependents, automatically generates a budget

    User Interaction and History:

    • History Tracking: Keeps track of all calculations performed. Users can add notes to each entry.
    • Export History: Allows users to export the history of calculations to a text file for record-keeping or further analysis.
    • Reset History: Option to clear the history.

    User Interface:

    • Display: Shows the current input and results.
    • Buttons: Clear (C), Delete (DEL), numerical digits (0-9), decimal point (.), and various function buttons.
    • Modals: Each financial calculation opens a modal for user input and displays the results.
    • Feedback: Provides visual feedback on successful budget calculations.
    • Responsive Design: The layout adjusts to fit different screen sizes and devices.

    How to Use the MultiVerse Converter – Calculator:

    1. Enter the Value: Simply input the value you wish to convert in the designated input field.
    2. Select the Current Unit: Choose the current unit from the dropdown menu next to the input field.
    3. Select the Target Unit: Choose the unit you want to convert to from the second dropdown menu.
    4. Convert: Click the “Convert” button. The result will be displayed instantly, providing you with a precise conversion based on up-to-date conversion rates and formulas.
    5. See the Work: The converter not only gives you the final result but also shows the conversion process and the units used, providing transparency and understanding of how the conversion was achieved.
    6. Reset: Use the “Reset” button to clear the input fields and start a new conversion.

    Performing Financial Calculations:

    1. Access Financial Calculators: Click the appropriate button (e.g., Loan, Amort, Interest, Budget).
    2. Fill in the Required Fields: Enter the necessary information in the modal that appears.
    3. Calculate: Click the “Calculate” button to see the results. The results will be displayed in the modal and added to the history.

    Managing History:

    1. View Past Calculations: View past calculations in the history section.
    2. Add Notes: Add notes to specific entries for future reference.
    3. Export History: Export the history to a text file by clicking the “Export History” button.
    4. Clear History: Clear the history by clicking the “Reset History” button.

    Conclusion:

    The MultiVerse Converter – Calculator is a comprehensive tool designed to meet both general and specific conversion and financial calculation needs. Its intuitive interface and robust feature set make it a valuable resource for personal and professional use. Whether you need to convert units, calculate a simple sum, or plan your financial future, this calculator provides the functionality and ease of use to handle a wide range of tasks efficiently


    Here are the conversions and corresponding formulas for manual calculations: MultiVerse Converter – Calculator

    Length Conversions

    • Kilometers (km) to Meters (m): 1 km = 1000 m
    • Meters (m) to Centimeters (cm): 1 m = 100 cm
    • Centimeters (cm) to Millimeters (mm): 1 cm = 10 mm
    • Inches to Centimeters (cm): 1 inch = 2.54 cm
    • Feet to Meters (m): 1 foot = 0.3048 m
    • Miles to Kilometers (km): 1 mile = 1.60934 km

    Volume Conversions

    • Liters (l) to Milliliters (ml): 1 l = 1000 ml
    • Gallons to Liters (l): 1 gallon = 3.78541 l
    • Quarts to Liters (l): 1 quart = 0.946353 l
    • Pints to Liters (l): 1 pint = 0.473176 l
    • Cups to Liters (l): 1 cup = 0.24 l
    • Ounces to Liters (l): 1 ounce = 0.0295735 l

    Weight Conversions

    • Kilograms (kg) to Grams (g): 1 kg = 1000 g
    • Grams (g) to Milligrams (mg): 1 g = 1000 mg
    • Pounds (lbs) to Kilograms (kg): 1 lb = 0.453592 kg
    • Ounces to Grams (g): 1 oz = 28.3495 g

    Temperature Conversions

    • Celsius to Fahrenheit: F = (C × 9/5) + 32
    • Fahrenheit to Celsius: C = (F – 32) × 5/9
    • Celsius to Kelvin: K = C + 273.15
    • Kelvin to Celsius: C = K – 273.15
    • Fahrenheit to Kelvin: K = (F + 459.67) × 5/9
    • Kelvin to Fahrenheit: F = (K × 9/5) – 459.67

    These formulas allow you to manually convert between various units of length, volume, weight, and temperature.


    List of conversion factors – MultiVerse Converter – Calculator – MultiVerse Converter – Calculator

    This article gives a list of conversion factors for several physical quantities. A number of different units (some only of historical interest) are shown and expressed in terms of the corresponding SI unit. Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10−6 metre). Within each table, the units are listed alphabetically, and the SI units (base or derived) are highlighted.

    The following quantities are considered: lengthareavolumeplane anglesolid anglemassdensitytimefrequencyvelocityvolumetric flow rateaccelerationforcepressure (or mechanical stress), torque (or moment of force), energypower (or heat flow rate), actiondynamic viscositykinematic viscosityelectric currentelectric chargeelectric dipoleelectromotive force (or electric potential difference), electrical resistancecapacitancemagnetic fluxmagnetic flux densityinductancetemperatureinformation entropyluminous intensityluminanceluminous fluxilluminanceradiation.

    Legend
    Symbol Definition
    exactly equal
    approximately equal to
    (exactly) corresponds to (different types of quantity describing the same phenomenon)
    digits indicates that digits repeat infinitely (e.g. 8.294369 corresponds to 8.294369369369369…)
    (H) of chiefly historical interest

    Length – MultiVerse Converter – Calculator

    Length
    Name of unit Symbol Definition Relation to SI units
    ångström Å ≡ 1×10−10 m ≡ 0.1 nm
    astronomical unit au ≡ 149597870700 m
    ≈ Distance from Earth to Sun
    ≡ 149597870700 m [1]
    attometre am ≡ 1×10−18 m ≡ 1×10−18 m
    barleycorn (H) = 1⁄3 in (see note above about rounding) = 8.46×10−3 m
    bohr, atomic unit of length a0 Bohr radius of hydrogen ≈ 5.2917721092(17)×10−11 m[2]
    cable length (imperial) ≡ 608 ft ≈ 185.3184 m
    cable length (International) ≡ 1⁄10 nmi ≡ 185.2 m
    cable length (US) ≡ 720 ft = 219.456 m
    chain (Gunter’s; Surveyor’s) ch ≡ 66 ft (US) ≡ 4 rods[3] ≈ 20.11684 m
    cubit (H) ≡ Distance from fingers to elbow ≈ 18 in ≈ 0.5 m
    ell (H) ell ≡ 45 in [4] (In England usually) = 1.143 m
    fathom ftm ≡ 6 ft [4] = 1.8288 m
    femtometre fm ≡ 1×10−15 m ≡ 1×10−15 m
    fermi fm ≡ 1×10−15 m[4] ≡ 1×10−15 m
    finger ≡ 7⁄8 in = 0.022225 m
    finger (cloth) ≡ 4+1⁄2 in = 0.1143 m
    foot (Benoît) (H) ft (Ben) ≈ 0.304799735 m
    foot (Cape) (H) Legally defined as 1.033 English feet in 1859 ≈ 0.314858 m
    foot (Clarke’s) (H) ft (Cla) ≈ 0.3047972654 m
    foot (Indian) (H) ft Ind ≈ 0.304799514 m
    foot, metric mf ≡ 300 mm ≡ 0.3 m
    foot, metric (Mesures usuelles) (H) ≡ 1⁄3 m ≡ 0.3 m
    foot (International) ft ≡ 0.3048 m ≡ 1⁄3 yd ≡ 12 inches ≡ 0.3048 m
    foot (Sear’s) (H) ft (Sear) ≈ 0.30479947 m
    foot (US Survey) ft (US) ≡ 1200⁄3937 m [5] ≈ 0.304800610 m
    french; charriere F ≡ 1⁄3 mm = 0.3×10−3 m
    furlong fur ≡ 10 chains = 660 ft = 220 yd [4] = 201.168 m
    hand ≡ 4 in [4] ≡ 0.1016 m
    inch (International) in ≡ 2.54 cm ≡ 1⁄36 yd ≡ 1⁄12 ft ≡ 0.0254 m
    league (land) lea ≈ 1 hour walk, Currently defined in US as 3 Statute miles,[3] but historically varied from 2 to 9 km ≈ 4828 m
    light-day ≡ 24 light-hours ≡ 2.59020683712×1013 m
    light-hour ≡ 60 light-minutes ≡ 1.0792528488×1012 m
    light-minute ≡ 60 light-seconds ≡ 1.798754748×1010 m
    light-second ≡ Distance light travels in one second in vacuum ≡ 299792458 m
    light-year ly ≡ Distance light travels in vacuum in 365.25 days [6] ≡ 9.4607304725808×1015 m
    line ln ≡ 1⁄12 in [7] = 0.002116 m
    link (Gunter’s; Surveyor’s) lnk ≡ 1⁄100 ch [4] ≡ 0.66 ft (US) ≡ 7.92 in ≈ 0.2011684 m
    link (Ramsden’s; Engineer’s) lnk ≡ 1 ft [4] = 0.3048 m
    metre (SI base unit)
    (meter)
    m ≡ Distance light travels in 1⁄299792458 of a second in vacuum.[8] (SI base unit)
    mickey ≡ 1⁄200 in = 1.27×10−4 m
    micrometre (old: micron) μ; μm ≡ 1×10−6 m ≡ 1×10−6 m
    mil; thou mil ≡ 1×10−3 in = 2.54×10−5 m
    mil (Sweden and Norway) mil ≡ 10 km = 10000 m
    mile (geographical) (H) ≡ 6082 ft = 1853.7936 m
    mile (international) mi ≡ 80 chains ≡ 5280 ft ≡ 1760 yd ≡ 1609.344 m
    mile (tactical or data) ≡ 6000 ft ≡ 1828.8 m
    mile (telegraph) (H) mi ≡ 6087 ft = 1855.3176 m
    mile (US Survey) mi ≡ 5280 US Survey feet ≡ (5280 × 1200⁄3937) m ≈ 1609.347219 m
    nail (cloth) ≡ 2+1⁄4 in [4] = 0.05715 m
    nanometre nm ≡ 1×10−9 m ≡ 1×10−9 m
    nautical league NL; nl ≡ 3 nmi [4] = 5556 m
    nautical mile (Admiralty) NM (Adm); nmi (Adm) = 6080 ft = 1853.184 m
    nautical mile (international) NM; nmi ≡ 1852 m[9] ≡ 1852 m
    nautical mile (US pre 1954) ≡ 1853.248 m ≡ 1853.248 m
    pace ≡ 2.5 ft [4] = 0.762 m
    palm ≡ 3 in [4] = 0.0762 m
    parsec pc Distant point with a parallax shift of one arc second from a base of one astronomical unit.
    ≡ 648000/π au[10][11]
    ≈ 30856775814913700 m[12]
    pica ≡ 12 points Dependent on point measures.
    picometre pm ≡ 1×10−12 m ≡ 1×10−12 m
    point (American, English)[13][14] pt ≡ 1⁄72.272 in ≈ 0.000351450 m
    point (Didot; European) [14][15] pt ≡ 1⁄12 × 1⁄72 of pied du roi;

    After 1878:
    ≡ 5⁄133 cm

    ≈ 0.00037597 m;

    After 1878:
    ≈ 0.00037593985 m

    point (PostScript[13] pt ≡ 1⁄72 in = 0.0003527 m
    point (TeX[13] pt ≡ 1⁄72.27 in = 0.0003514598 m
    quarter ≡ 1⁄4 yd = 0.2286 m
    rod; pole; perch (H) rd ≡ 16+1⁄2 ft = 5.0292 m
    rope (H) rope ≡ 20 ft [4] = 6.096 m
    shaku (Japan) ≡ 10/33 m ≈ 0.303 0303 m
    span (H) ≡ 9 in [4] = 0.2286 m
    spat[16] ≡ 1×1012 m
    stick (H) ≡ 2 in = 0.0508 m
    toise (French, post 1667) (H) T ≡ 27000/13853 m ≈ 1.949 0363 m
    twip twp ≡ 1⁄1440 in = 1.7638×10−5 m
    x unit; siegbahn xu ≈ 1.0021×10−13 m [4]
    yard (International) yd ≡ 0.9144 m [5] ≡ 3 ft ≡ 36 in ≡ 0.9144 m
    yoctometre ym ≡ 1×10−24 m ≡ 1×10−24 m
    zeptometre zm ≡ 1×10−21 m ≡ 1×10−21 m

    Area – MultiVerse Converter – Calculator

    Area
    Name of unit Symbol Definition Relation to SI units
    acre (international) ac ≡ 1 ch × 10 ch = 4840 sq yd ≡ 4046.8564224 m2
    acre (US survey) ac ≡ 10 sq ch = 4840 sq yd, also 43560 sq ft ≈ 4046.873 m2[17]
    are a ≡ 100 m2 ≡ 100 m2
    barn b ≡ 10−28 m2 ≡ 10−28 m2
    barony ≡ 4000 ac ≡ 1.61874256896×107 m2
    board bd ≡ 1 in × 1 ft ≡ 7.74192×10−3 m2
    boiler horsepower equivalent direct radiation bhp EDR ≡ 1 ft2 × 1 bhp / (240 BTUIT/h) ≈ 12.958174 m2
    circular inch circ in ≡ π⁄4 sq in ≈ 5.067075×10−4 m2
    circular mil; circular thou circ mil ≡ π⁄4 mil2 ≈ 5.067075×10−10 m2
    cord ≡ 192 bd ≡ 1.48644864 m2
    cuerda (PR Survey) cda ≡ 1 cda x 1 cda = 0.971222 acre ≡ 3930.395625 m2
    dunam ≡ 1000 m2 ≡ 1000 m2
    guntha (India) ≡ 121 sq yd ≈ 101.17 m2
    hectare ha ≡ 10000 m2 ≡ 10000 m2
    hide ≈ 120 ac (variable) ≈ 5×105 m2
    rood ro ≡ 1⁄4 ac = 1011.7141056 m2
    ping ≡ 20⁄11 m × 20⁄11 m ≈ 3.306 m2
    section ≡ 1 mi × 1 mi = 2.589988110336×106 m2
    shed ≡ 10−52 m2 = 10−52 m2
    square (roofing) ≡ 10 ft × 10 ft = 9.290304 m2
    square chain (international) sq ch ≡ 66 ft × 66 ft = 1⁄10 ac ≡ 404.68564224 m2
    square chain (US Survey) sq ch ≡ 66 ft (US) × 66 ft (US) = 1⁄10 US survey acre ≈ 404.6873 m2
    square foot sq ft ≡ 1 ft × 1 ft ≡ 9.290304×10−2 m2
    square foot (US Survey) sq ft ≡ 1 ft (US) × 1 ft (US) ≈ 9.2903411613275×10−2 m2
    square inch sq in ≡ 1 in × 1 in ≡ 6.4516×10−4 m2
    square kilometre km2 ≡ 1 km × 1 km = 106 m2
    square link (Gunter’s)(International) sq lnk ≡ 1 lnk × 1 lnk ≡ 0.66 ft × 0.66 ft = 4.0468564224×10−2 m2
    square link (Gunter’s)(US Survey) sq lnk ≡ 1 lnk × 1 lnk ≡ 0.66 ft (US) × 0.66 ft (US) ≈ 4.046872×10−2 m2
    square link (Ramsden’s) sq lnk ≡ 1 lnk × 1 lnk ≡ 1 ft × 1 ft = 0.09290304 m2
    square metre (SI unit) m2 ≡ 1 m × 1 m = 1 m2
    square mil; square thou sq mil ≡ 1 mil × 1 mil = 6.4516×10−10 m2
    square mile sq mi ≡ 1 mi × 1 mi ≡ 2.589988110336×106 m2
    square mile (US Survey) sq mi ≡ 1 mi (US) × 1 mi (US) ≈ 2.58999847×106 m2
    square rod/pole/perch sq rd ≡ 1 rd × 1 rd = 25.29285264 m2
    square yard (International) sq yd ≡ 1 yd × 1 yd ≡ 0.83612736 m2
    stremma ≡ 1000 m2 = 1000 m2
    township ≡ 36 sq mi (US) ≈ 9.323994×107 m2
    yardland ≈ 30 ac ≈ 1.2×105 m2

    Volume – MultiVerse Converter – Calculator

    Volume
    Name of unit Symbol Definition Relation to SI units
    acre-foot ac ft ≡ 1 ac x 1 ft = 43560 cu ft = 1233.48183754752 m3
    acre-inch ≡ 1 ac × 1 in = 102.79015312896 m3
    barrel (imperial) bl (imp) ≡ 36 gal (imp) = 0.16365924 m3
    barrel (petroleum); archaic blue-barrel bl; bbl ≡ 42 gal (US) ≡ 0.158987294928 m3
    barrel (US dry) bl (US) ≡ 105 qt (US) = 105/32 bu (US lvl) = 0.115628198985075 m3
    barrel (US fluid) fl bl (US) ≡ 31+1⁄2 gal (US) = 0.119240471196 m3
    board-foot bdft ≡ 144 cu in ≡ 2.359737216×10−3 m3
    bucket (imperial) bkt ≡ 4 gal (imp) = 0.01818436 m3
    bushel (imperial) bu (imp) ≡ 8 gal (imp) = 0.03636872 m3
    bushel (US dry heaped) bu (US) ≡ 1+1⁄4 bu (US lvl) = 0.0440488377086 m3
    bushel (US dry level) bu (US lvl) ≡ 2150.42 cu in = 0.03523907016688 m3
    butt, pipe ≡ 126 gal (US) (wine) = 0.476961884784 m3
    coomb ≡ 4 bu (imp) = 0.14547488 m3
    cord (firewood) ≡ 8 ft × 4 ft × 4 ft = 3.624556363776 m3
    cord-foot ≡ 16 cu ft = 0.453069545472 m3
    cubic fathom cu fm ≡ 1 fm × 1 fm × 1 fm = 6.116438863872 m3
    cubic foot ft3 ≡ 1 ft × 1 ft × 1 ft ≡ 0.028316846592 m3
    cubic inch in3 ≡ 1 in × 1 in × 1 in ≡ 16.387064×10−6 m3
    cubic metre (SI unit) m3 ≡ 1 m × 1 m × 1 m ≡ 1 m3
    cubic mile cu mi ≡ 1 mi × 1 mi × 1 mi ≡ 4168181825.440579584 m3
    cubic yard yd3 ≡ 27 cu ft ≡ 0.764554857984 m3
    cup (breakfast) ≡ 10 fl oz (imp) = 284.130625×10−6 m3
    cup (Canadian) c (CA) ≡ 8 fl oz (imp) = 227.3045×10−6 m3
    cup (metric) c ≡ 250.0×10−6 m3 ≡ 250.0×10−6 m3
    cup (US customary) c (US) ≡ 8 US fl oz ≡ 1⁄16 gal (US) = 236.5882365×10−6 m3
    cup (US food nutrition labeling) c (US) ≡ 240 mL[18] = 2.4×10−4 m3
    dash (imperial) ≡ 1⁄192 gi (imp) = 1/8 tsp (imp) = 739.92350260416×10−9 m3
    dash (US) ≡ 1⁄48 US fl oz = 1/8 US tsp = 616.11519921875×10−9 m3
    dessertspoon (imperial) ≡ 1⁄12 gi (imp) = 11.8387760416×10−6 m3
    drop (imperial) gtt ≡ 1⁄288 fl oz (imp) = 98.6564670138×10−9 m3
    drop (imperial) (alt) gtt ≡ 1⁄1824 gi (imp) ≈ 77.886684×10−9 m3
    drop (medical) ≡ 1⁄12 mL = 83.3×10−9 m3
    drop (metric) ≡ 1⁄20 mL = 50.0×10−9 m3
    drop (US) gtt ≡ 1⁄360 US fl oz = 82.14869322916×10−9 m3
    drop (US) (alt) gtt ≡ 1⁄456 US fl oz ≈ 64.85423149671×10−9 m3
    drop (US) (alt) gtt ≡ 1⁄576 US fl oz ≈ 51.34293326823×10−9 m3
    fifth ≡ 1⁄5 US gal = 757.0823568×10−6 m3
    firkin ≡ 9 gal (imp) = 0.04091481 m3
    fluid drachm (imperial) fl dr ≡ 1⁄8 fl oz (imp) = 3.5516328125×10−6 m3
    fluid dram (US); US fluidram fl dr ≡ 1⁄8 US fl oz = 3.6966911953125×10−6 m3
    fluid scruple (imperial) fl s ≡ 1⁄24 fl oz (imp) = 1.18387760416×10−6 m3
    gallon (beer) beer gal ≡ 282 cu in = 4.621152048×10−3 m3
    gallon (imperial) gal (imp) ≡ 4.54609 L ≡ 4.54609×10−3 m3
    gallon (US dry) gal (US) ≡ 1⁄8 bu (US lvl) = 4.40488377086×10−3 m3
    gallon (US fluid; Wine) gal (US) ≡ 231 cu in ≡ 3.785411784×10−3 m3
    gill (imperial); Noggin gi (imp); nog ≡ 5 fl oz (imp) = 142.0653125×10−6 m3
    gill (US) gi (US) ≡ 4 US fl oz = 118.29411825×10−6 m3
    hogshead (imperial) hhd (imp) ≡ 2 bl (imp) = 0.32731848 m3
    hogshead (US) hhd (US) ≡ 2 fl bl (US) = 0.238480942392 m3
    jigger (bartending) ≡ 1+1⁄2 US fl oz ≈ 44.36×10−6 m3
    kilderkin ≡ 18 gal (imp) = 0.08182962 m3
    lambda λ ≡ 1 mm3 = 1×10−9 m3
    last ≡ 80 bu (imp) = 2.9094976 m3
    litre
    (liter)
    L or l ≡ 1 dm3 [19] ≡ 0.001 m3
    load ≡ 50 cu ft = 1.4158423296 m3
    minim (imperial) min ≡ 1⁄480 fl oz (imp) = 1/60 fl dr (imp) = 59.1938802083×10−9 m3
    minim (US) min ≡ 1⁄480 US fl oz = 1⁄60 US fl dr = 61.611519921875×10−9 m3
    ounce (fluid imperial) fl oz (imp) ≡ 1⁄160 gal (imp) ≡ 28.4130625×10−6 m3
    ounce (fluid US customary) US fl oz ≡ 1⁄128 gal (US) ≡ 29.5735295625×10−6 m3
    ounce (fluid US food nutrition labeling) US fl oz ≡ 30 mL[18] ≡ 3×10−5 m3
    peck (imperial) pk ≡ 2 gal (imp) = 9.09218×10−3 m3
    peck (US dry) pk ≡ 1⁄4 US lvl bu = 8.80976754172×10−3 m3
    perch per ≡ 16+1⁄2 ft × 1+1⁄2 ft × 1 ft = 0.700841953152 m3
    pinch (imperial) ≡ 1⁄384 gi (imp) = 1⁄2 dash (imp) = 369.961751302083×10−9 m3
    pinch (US) ≡ 1⁄96 US fl oz = 1⁄2 US dash = 308.057599609375×10−9 m3
    pint (imperial) pt (imp) ≡ 1⁄8 gal (imp) = 568.26125×10−6 m3
    pint (US dry) pt (US dry) ≡ 1⁄64 bu (US lvl) ≡ 1⁄8 gal (US dry) = 550.6104713575×10−6 m3
    pint (US fluid) pt (US fl) ≡ 1⁄8 gal (US) = 473.176473×10−6 m3
    pony ≡ 3⁄4 US fl oz = 22.180147171875×10−6 m3
    pottle; quartern ≡ 1⁄2 gal (imp) = 80 fl oz (imp) = 2.273045×10−3 m3
    quart (imperial) qt (imp) ≡ 1⁄4 gal (imp) = 1.1365225×10−3 m3
    quart (US dry) qt (US) ≡ 1⁄32 bu (US lvl) = 1⁄4 gal (US dry) = 1.101220942715×10−3 m3
    quart (US fluid) qt (US) ≡ 1⁄4 gal (US fl) = 946.352946×10−6 m3
    quarter; pail ≡ 8 bu (imp) = 0.29094976 m3
    register ton ≡ 100 cu ft = 2.8316846592 m3
    sack (US) ≡ 3 bu (US lvl) = 0.10571721050064 m3
    seam ≡ 8 bu [16] = 0.29095 m3
    shot (US) usually 1.5 US fl oz[16] ≈ 44.4×10−6 m3
    strike (imperial) ≡ 2 bu (imp) = 0.07273744 m3
    strike (US) ≡ 2 bu (US lvl) = 0.07047814033376 m3
    tablespoon (Australian metric) ≡ 20.0×10−6 m3
    tablespoon (Canadian) tbsp ≡ 1⁄2 fl oz (imp) = 14.20653125×10−6 m3
    tablespoon (imperial) tbsp ≡ 5⁄8 fl oz (imp) = 17.7581640625×10−6 m3
    tablespoon (metric) ≡ 15×10−6 m3
    tablespoon (US customary) tbsp ≡ 1⁄2 US fl oz = 14.78676478125×10−6 m3
    tablespoon (US food nutrition labeling) tbsp ≡ 15 mL[18] = 15×10−6 m3
    teaspoon (Canadian) tsp ≡ 1⁄6 fl oz (imp) = 4.735510416×10−6 m3
    teaspoon (imperial) tsp ≡ 1⁄24 gi (imp) = 5.91938802083×10−6 m3
    teaspoon (metric) ≡ 5.0×10−6 m3 ≡ 5.0×10−6 m3
    teaspoon (US customary) tsp ≡ 1⁄6 US fl oz = 4.92892159375×10−6 m3
    teaspoon (US food nutrition labeling) tsp ≡ 5 mL[18] = 5×10−6 m3
    timber foot ≡ 1 cu ft = 0.028316846592 m3
    ton (displacement) ≡ 35 cu ft = 0.99108963072 m3
    ton (freight) ≡ 40 cu ft = 1.13267386368 m3
    ton (water) ≡ 28 bu (imp) = 1.01832416 m3
    tun ≡ 252 gal (wine) = 0.953923769568 m3
    wey (US) ≡ 40 bu (US lvl) = 1.4095628066752 m3

    Plane angle – MultiVerse Converter – Calculator

    Plane angle
    Name of unit Symbol Definition Relation to SI units
    NATO mil (various) ≡ 2π⁄6400 rad ≈ 0.981748×10−3 rad
    Swedish streck ≡ 2π⁄6300 rad ≈ 0.997302×10−3 rad
    milliradian mrad ≡ 1⁄1000 rad ≈ 1×10−3 rad
    Warsaw Pact mil ≡ 2π⁄6000 rad ≈ 1.047167×10−3 rad
    arcminute; MOA ≡ 1°⁄60 ≈ 0.290888×10−3 rad
    arcsecond ≡ 1°⁄3600 ≈ 4.848137×10−6 rad
    centesimal minute of arc ≡ 1⁄100 grad ≈ 0.157080×10−3 rad
    centesimal second of arc ≡ 1⁄10000 grad ≈ 1.570796×10−6 rad
    degree (of arc) ° ≡ 1⁄360 of a revolution ≡ π⁄180 rad ≈ 17.453293×10−3 rad
    grad; gradian; gon grad ≡ 1⁄400 of a revolution ≡ π⁄200 rad ≡ 0.9° ≈ 15.707963×10−3 rad
    octant ≡ 45° ≈ 0.785398 rad
    quadrant ≡ 90° ≈ 1.570796 rad
    radian (SI unit) rad The angle subtended at the center of a circle by an arc whose length is equal to the circle’s radius.
    One full revolution encompasses 2π radians.
    = 1 rad
    sextant ≡ 60° ≈ 1.047198 rad
    sign ≡ 30° ≈ 0.523599 rad

    Solid angle – MultiVerse Converter – Calculator

    Solid angle
    Name of unit Symbol Definition Relation to SI units
    spat ≡ 4π sr[16] – The solid angle subtended by a sphere at its centre. ≈ 12.56637 sr
    square degree deg2; sq.deg.; (°)2 ≡ (π⁄180)2 sr ≈ 0.30462×10−3 sr
    steradian (SI unit) sr The solid angle subtended at the center of a sphere of radius r by a portion of the sphere having an area r2.
    A sphere subtends 4π sr.[16]
    = 1 sr

    Mass – MultiVerse Converter – Calculator

    Notes:

    • See Weight for detail of mass/weight distinction and conversion.
    • Avoirdupois is a system of mass based on a pound of 16 ounces, while Troy weight is the system of mass where 12 troy ounces equals one troy pound.
    • The symbol g0 is used to denote standard gravity in order to avoid confusion with the (upright) g symbol for gram.
    Mass
    Name of unit Symbol Definition Relation to SI units
    atomic mass unit, unified u; AMU Same as dalton (see below) ≈ 1.660539040(20)×10−27 kg[3]
    atomic unit of masselectron rest mass me ≈ 9.10938291(40)×10−31 kg[20]
    bag (coffee) ≡ 60 kg = 60 kg
    bag (Portland cement) ≡ 94 lb av = 42.63768278 kg
    barge ≡ 22+1⁄2 short ton = 20411.65665 kg
    carat kt ≡ 3+1⁄6 gr = 205.1965483 mg
    carat (metric) ct ≡ 200 mg = 200 mg
    clove ≡ 8 lb av = 3.62873896 kg
    crith ≡ mass of 1 L of hydrogen gas at STP ≈ 89.9349 mg
    dalton Da 1/12 the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest ≈ 1.660538921(73)×10−27 kg[3]
    dram (apothecary; troy) dr t ≡ 60 gr = 3.8879346 g
    dram (avoirdupois) dr av ≡ 27+11⁄32 gr = 1.7718451953125 g
    electronvolt mass-equivalent eV/c2 ≡ 1 eV / c2 = 1.78266184(45)×10−36 kg[3]
    gamma γ ≡ 1 μg = 1 μg
    grain gr ≡ 1⁄7000 lb av ≡ 64.79891 mg
    grave gv grave was the original name of the kilogram ≡ 1 kg
    hundredweight (long) long cwt or cwt ≡ 112 lb av = 50.80234544 kg
    hundredweight (short); cental sh cwt ≡ 100 lb av = 45.359237 kg
    hyl; metric slug ≡ 1 kgf / 1 m/s2 = 9.80665 kg
    kilogram
    (kilogramme)
    kg ≈ mass of the prototype near Paris
    ≈ mass of 1 litre of water
    (SI base unit)[8]
    kip kip ≡ 1000 lb av = 453.59237 kg
    mark ≡ 8 oz t = 248.8278144 g
    mite ≡ 1⁄20 gr = 3.2399455 mg
    mite (metric) ≡ 1⁄20 g = 50 mg
    ounce (apothecary; troy) oz t ≡ 1⁄12 lb t = 31.1034768 g
    ounce (avoirdupois) oz av ≡ 1⁄16 lb = 28.349523125 g
    ounce (US food nutrition labelling) oz ≡ 28 g[18] = 28 g
    pennyweight dwt; pwt ≡ 1⁄20 oz t = 1.55517384 g
    point ≡ 1⁄100 ct = 2 mg
    pound (avoirdupois) lb av ≡ 0.45359237 kg = 7000 grains ≡ 0.45359237 kg
    pound (metric) ≡ 500 g = 500 g
    pound (troy) lb t ≡ 5760 grains = 0.3732417216 kg
    quarter (imperial) ≡ 1⁄4 long cwt = 2 st = 28 lb av = 12.70058636 kg
    quarter (informal) ≡ 1⁄4 short ton = 226.796185 kg
    quarter, long (informal) ≡ 1⁄4 long ton = 254.0117272 kg
    quintal (metric) q ≡ 100 kg = 100 kg
    scruple (apothecary) s ap ≡ 20 gr = 1.2959782 g
    sheet ≡ 1⁄700 lb av = 647.9891 mg
    slug; geepound slug ≡ g0 × 1 lb av × 1 s2/ft ≈ 14.593903 kg
    stone st ≡ 14 lb av = 6.35029318 kg
    ton, assay (long) AT ≡ 1 mg × 1 long ton ÷ 1 oz t = 32.6 g
    ton, assay (short) AT ≡ 1 mg × 1 short ton ÷ 1 oz t = 29.16 g
    ton, long long tn or ton ≡ 2240 lb = 1016.0469088 kg
    ton, short sh tn ≡ 2000 lb = 907.18474 kg
    tonne (mts unit) t ≡ 1000 kg = 1000 kg
    wey ≡ 252 lb = 18 st = 114.30527724 kg (variants exist)
    zentner Ztr. Definitions vary.[16][21]

    Density – MultiVerse Converter – Calculator

    Density
    Name of unit Symbol Definition Relation to SI units
    gram per millilitre g/mL ≡ g/mL = 1000 kg/m3
    kilogram per cubic metre (SI unit) kg/m3 ≡ kg/m3 = 1 kg/m3
    kilogram per litre kg/L ≡ kg/L = 1000 kg/m3
    ounce (avoirdupois) per cubic foot oz/ft3 ≡ oz/ft3 ≈ 1.001153961 kg/m3
    ounce (avoirdupois) per cubic inch oz/in3 ≡ oz/in3 ≈ 1.729994044×103 kg/m3
    ounce (avoirdupois) per gallon (imperial) oz/gal ≡ oz/gal ≈ 6.236023291 kg/m3
    ounce (avoirdupois) per gallon (US fluid) oz/gal ≡ oz/gal ≈ 7.489151707 kg/m3
    pound (avoirdupois) per cubic foot lb/ft3 ≡ lb/ft3 ≈ 16.01846337 kg/m3
    pound (avoirdupois) per cubic inch lb/in3 ≡ lb/in3 ≈ 2.767990471×104 kg/m3
    pound (avoirdupois) per gallon (imperial) lb/gal ≡ lb/gal ≈ 99.77637266 kg/m3
    pound (avoirdupois) per gallon (US fluid) lb/gal ≡ lb/gal ≈ 119.8264273 kg/m3
    slug per cubic foot slug/ft3 ≡ slug/ft3 ≈ 515.3788184 kg/m3

    Time – MultiVerse Converter – Calculator

    Time
    Name of unit Symbol Definition Relation to SI units
    atomic unit of time a.u. ≡ a0/(αc) ≈ 2.418884254×10−17 s
    Callippic cycle ≡ 441 mo (hollow) + 499 mo (full) = 76 a of 365.25 d = 2.396736 Gs or 2.3983776 Gs[note 1]
    century c ≡ 100 years (100 a) = 3.1556952 Gs[note 2][note 3]
    day d = 24 h = 1440 min = 86.4 ks[note 3]
    day (sidereal) d ≡ Time needed for the Earth to rotate once around its axis, determined from successive transits of a very distant astronomical object across an observer’s meridian (International Celestial Reference Frame) ≈ 86.1641 ks
    decade dec ≡ 10 years (10 a) = 315.569520 Ms[note 2][note 3]
    fortnight fn ≡ 2 wk = 1.2096 Ms[note 3]
    helek ≡ 1⁄1080 h = 3.3 s
    Hipparchic cycle ≡ 4 Callippic cycles – 1 d = 9.593424 Gs
    hour h ≡ 60 min = 3.6 ks[note 3]
    jiffy j ≡ 1⁄60 s = 16.6 ms
    jiffy (alternative) ja ≡ 1⁄100 s = 10 ms
     (quarter of an hour) ≡ 1⁄4 h = 1⁄96 d = 15 min = 900 s
    kè (traditional) ≡ 1⁄100 d = 14.4 min = 864 s
    lustre; lūstrum ≡ 5 a of 365 d[note 4] = 157.68 Ms
    Metonic cycle; enneadecaeteris ≡ 110 mo (hollow) + 125 mo (full) = 6940 d ≈ 19 a = 599.616 Ms
    millennium ≡ 1000 years (1000 a) = 31.556952 Gs[note 2][note 3]
    milliday md ≡ 1⁄1000 d = 86.4 s
    minute min ≡ 60 s, due to leap seconds sometimes 59 s or 61 s, = 60 s[note 3]
    moment ≡ 90 s = 90 s
    month (full) mo ≡ 30 d[22] = 2.592×106 s[note 3]
    month (Greg. av.) mo = 30.436875 d ≈ 2.6297 Ms[note 3]
    month (hollow) mo ≡ 29 d[22] = 2.5056 Ms[note 3]
    Month (synodic) mo Cycle time of moon phases ≈ 29.530589 d (average) ≈ 2.551 Ms
    octaeteris = 48 mo (full) + 48 mo (hollow) + 3 mo (full)[23][24] = 8 a of 365.25 d = 2922 d = 252.4608 Ms[note 3]
    Planck time ≡ (Gc5)1⁄2 ≈ 5.39116×10−44 s[25]
    second (SI base unit) s ≡ Time of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom at 0 K[8] (but other seconds are sometimes used in astronomy). Also that time it takes for light to travel a distance of 299792458 metres. (SI base unit)
    shake ≡ 10−8 s = 10 ns
    sigma ≡ 10−6 s = 1 μs
    Sothic cycle ≡ 1461 a of 365 d = 46.074096 Gs
    svedberg S ≡ 10−13 s = 100 fs
    week wk ≡ 7 d = 168 h = 10080 min = 604.8 ks[note 3]
    year (common) a, y, or yr 365 d = 31.536 Ms[note 3][26]
    year (Gregorian) a, y, or yr = 365.2425 d average, calculated from common years (365 d) plus leap years (366 d) on most years divisible by 4. See leap year for details. = 31.556952 Ms[note 3]
    year (Julian) a, y, or yr = 365.25 d average, calculated from common years (365 d) plus one leap year (366 d) every four years = 31.5576 Ms
    year (leap) a, y, or yr 366 d = 31.6224 Ms[note 3][26]
    year (mean tropical) a, y, or yr Conceptually, the length of time it takes for the Sun to return to the same position in the cycle of seasons, [Converter 1] approximately 365.24219 d, each day being 86400 SI seconds[27] ≈ 31.556925 Ms
    year (sidereal) a, y, or yr ≡ Time taken for Sun to return to the same position with respect to the stars of the celestial sphere, approximately 365.256363 d ≈ 31.5581497632 Ms
    Notes:

    1. ^ see Callippic cycle for explanation of the differences
    2. Jump up to:a b c This is based on the average Gregorian year. See above for definition of year lengths.
    3. Jump up to:a b c d e f g h i j k l m n o Where UTC is observed, the length of this unit may increase or decrease
      depending on the number of leap seconds which occur during the time interval in question.
    4. ^ The length of ancient lustral cycles was not constant; see Lustrum for more details

    Frequency – MultiVerse Converter – Calculator

    Frequency
    Name of unit Symbol Definition Relation to SI units
    actions per minute APM ≡ 1/60 Hz ≈ 0.0167 Hz
    cycle per second cps ≡ 1 Hz = 1 cps = 1 Hz
    degree per second deg/s ≡ 1 °/s ≡ 1/360 Hz = 0.0027 Hz
    hertz (SI unit) Hz ≡ One cycle per second = 1 Hz = 1/s
    radian per second rad/s ≡ 1/(2π) Hz ≈ 0.159155 Hz
    revolution per minute rpm ≡ One rpm equals one rotation completed around a fixed axis in one minute of time. ≈ 0.104719755 rad/s

    Speed or velocity – MultiVerse Converter – Calculator

    Speed
    Name of unit Symbol Definition Relation to SI units
    foot per hour fph ≡ 1 ft/h = 8.46×10−5 m/s
    foot per minute fpm ≡ 1 ft/min = 5.08×10−3 m/s
    foot per second fps ≡ 1 ft/s = 3.048×10−1 m/s
    furlong per fortnight ≡ furlong/fortnight ≈ 1.663095×10−4 m/s
    inch per hour iph ≡ 1 in/h = 7.05×10−6 m/s
    inch per minute ipm ≡ 1 in/min = 4.23×10−4 m/s
    inch per second ips ≡ 1 in/s = 2.54×10−2 m/s
    kilometre per hour km/h ≡ 1 km/h = 2.7×10−1 m/s
    knot kn ≡ 1 nmi/h = 1.852 km/h = 0.514 m/s
    knot (Admiralty) kn ≡ 1 NM (Adm)/h = 1.853184 km/h[28] = 0.514773 m/s
    mach number M Ratio of the speed to the speed of sound[note 1] in the medium (unitless). ≈ 340 m/s in air at sea level
    ≈ 295 m/s in air at jet altitudes
    metre per second (SI unit) m/s ≡ 1 m/s = 1 m/s
    mile per hour mph ≡ 1 mi/h = 0.44704 m/s
    mile per minute mpm ≡ 1 mi/min = 26.8224 m/s
    mile per second mps ≡ 1 mi/s = 1609.344 m/s
    speed of light in vacuum c ≡ 299792458 m/s = 299792458 m/s
    speed of sound in air s 1225 to 1062 km/h (761–660 mph or 661–574 kn)[note 1] ≈ 340 to 295 m/s
    Note
    1. Jump up to:a b The speed of sound varies especially with temperature and pressure from about 340 m/s (1,225 km/h or 761 mph or 661 kn)
      in air at sea level to about 300 m/s (1,062 km/h or 660 mph or 573 kn) at jet altitudes (12200 m or 40000 ft).[29]

    velocity consists of a speed combined with a direction; the speed part of the velocity takes units of speed.

    Flow (volume) – MultiVerse Converter – Calculator

    Volumetric flow rate
    Name of unit Symbol Definition Relation to SI units
    cubic foot per minute CFM[citation needed] ≡ 1 ft3/min = 4.719474432×10−4 m3/s
    cubic foot per second ft3/s ≡ 1 ft3/s = 0.028316846592 m3/s
    cubic inch per minute in3/min ≡ 1 in3/min = 2.7311773×10−7 m3/s
    cubic inch per second in3/s ≡ 1 in3/s = 1.6387064×10−5 m3/s
    cubic metre per second (SI unit) m3/s ≡ 1 m3/s = 1 m3/s
    gallon (US fluid) per day GPD[citation needed] ≡ 1 gal/d = 4.381263638×10−8 m3/s
    gallon (US fluid) per hour GPH[citation needed] ≡ 1 gal/h = 1.051503273×10−6 m3/s
    gallon (US fluid) per minute GPM[citation needed] ≡ 1 gal/min = 6.30901964×10−5 m3/s
    litre per minute l/min or L/min ≡ 1 L/min = 1.6×10−5 m3/s

    Acceleration – MultiVerse Converter – Calculator

    Acceleration
    Name of unit Symbol Definition Relation to SI units
    foot per hour per second fph/s ≡ 1 ft/(h⋅s) = 8.46×10−5 m/s2
    foot per minute per second fpm/s ≡ 1 ft/(min⋅s) = 5.08×10−3 m/s2
    foot per second squared fps2 ≡ 1 ft/s2 = 3.048×10−1 m/s2
    gal; galileo Gal ≡ 1 cm/s2 = 10−2 m/s2
    inch per minute per second ipm/s ≡ 1 in/(min⋅s) = 4.23×10−4 m/s2
    inch per second squared ips2 ≡ 1 in/s2 = 2.54×10−2 m/s2
    knot per second kn/s ≡ 1 kn/s ≈ 5.14×10−1 m/s2
    metre per second squared (SI unit) m/s2 ≡ 1 m/s2 = 1 m/s2
    mile per hour per second mph/s ≡ 1 mi/(h⋅s) = 4.4704×10−1 m/s2
    mile per minute per second mpm/s ≡ 1 mi/(min⋅s) = 26.8224 m/s2
    mile per second squared mps2 ≡ 1 mi/s2 = 1.609344×103 m/s2
    standard gravity g0 ≡ 9.80665 m/s2 = 9.80665 m/s2

    Force – MultiVerse Converter – Calculator

    Force
    Name of unit Symbol Definition Relation to SI units
    atomic unit of force ≡ me⋅α2⋅c2⁄a0 ≈ 8.23872206×10−8 N[30]
    dyne (CGS unit) dyn ≡ g⋅cm/s2 = 10−5 N
    kilogram-force; kilopond; grave-force kgf; kp; gvf ≡ g0 × 1 kg = 9.80665 N
    kip; kip-force kip; kipf; klbf ≡ g0 × 1000 lb = 4.4482216152605×103 N
    milligrave-force, gravet-force mgvf; gvtf ≡ g0 × 1 g = 9.80665 mN
    long ton-force tnf[citation needed] ≡ g0 × 1 long ton = 9.96401641818352×103 N
    newton (SI unit) N A force capable of giving a mass of one kilogram an acceleration of one metre per second per second.[31] = 1 N = 1 kg⋅m/s2
    ounce-force ozf ≡ g0 × 1 oz = 0.27801385095378125 N
    pound-force lbf ≡ g0 × 1 lb = 4.4482216152605 N
    poundal pdl ≡ 1 lb⋅ft/s2 = 0.138254954376 N
    short ton-force tnf[citation needed] ≡ g0 × 1 short ton = 8.896443230521×103 N
    sthene (mts unit) sn ≡ 1 t⋅m/s2 = 103 N

    Pressure or mechanical stress – MultiVerse Converter – Calculator

    Pressure
    Name of unit Symbol Definition Relation to SI units
    atmosphere (standard) atm ≡ 101325 Pa[32]
    atmosphere (technical) at ≡ 1 kgf/cm2 = 9.80665×104 Pa[32]
    bar bar ≡ 100000 Pa ≡ 105 Pa
    barye (CGS unit) ≡ 1 dyn/cm2 = 0.1 Pa
    centimetre of mercury cmHg ≡ 13595.1 kg/m3 × 1 cm × g0 ≈ 1.33322×103 Pa[32]
    centimetre of water (4 °C) cmH2O ≈ 999.972 kg/m3 × 1 cm × g0 ≈ 98.0638 Pa[32]
    foot of mercury (conventional) ftHg ≡ 13595.1 kg/m3 × 1 ft × g0 ≈ 4.063666×104 Pa[32]
    foot of water (39.2 °F) ftH2O ≈ 999.972 kg/m3 × 1 ft × g0 ≈ 2.98898×103 Pa[32]
    inch of mercury (conventional) inHg ≡ 13595.1 kg/m3 × 1 in × g0 ≈ 3.386389×103 Pa[32]
    inch of water (39.2 °F) inH2O ≈ 999.972 kg/m3 × 1 in × g0 ≈ 249.082 Pa[32]
    kilogram-force per square millimetre kgf/mm2 ≡ 1 kgf/mm2 = 9.80665×106 Pa[32]
    kip per square inch ksi ≡ 1 kipf/sq in ≈ 6.894757×106 Pa[32]
    long ton per square foot ≡ 1 long ton × g0 / 1 sq ft ≈ 1.0725178011595×105 Pa
    micrometre of mercury μmHg ≡ 13595.1 kg/m3 × 1 μm × g0 ≈ 0.001 torr ≈ 0.1333224 Pa[32]
    millimetre of mercury mmHg ≡ 13595.1 kg/m3 × 1 mm × g0 ≈ 1 torr ≈ 133.3224 Pa[32]
    millimetre of water (3.98 °C) mmH2O ≈ 999.972 kg/m3 × 1 mm × g0 = 0.999972 kgf/m2 = 9.80638 Pa
    pascal (SI unit) Pa ≡ N/m2 = kg/(m⋅s2) = 1 Pa[33]
    pièze (mts unit) pz ≡ 1000 kg/m⋅s2 = 103 Pa = 1 kPa
    pound per square foot psf ≡ 1 lbf/ft2 ≈ 47.88026 Pa[32]
    pound per square inch psi ≡ 1 lbf/in2 ≈ 6.894757×103 Pa[32]
    poundal per square foot pdl/sq ft ≡ 1 pdl/sq ft ≈ 1.488164 Pa[32]
    short ton per square foot ≡ 1 short ton × g0 / 1 sq ft ≈ 9.5760518×104 Pa
    torr torr ≡ 101325⁄760 Pa ≈ 133.3224 Pa[32]

    Torque or moment of force – MultiVerse Converter – Calculator

    Torque
    Name of unit Symbol Definition Relation to SI units
    pound-force-foot lbf⋅ft ≡ g0 × 1 lb × 1 ft = 1.3558179483314004 N⋅m
    poundal-ft pdl⋅ft ≡ 1 lb⋅ft2/s2 = 4.21401100938048×10−2 N⋅m
    pound force-inch lbf⋅in ≡ g0 × 1 lb × 1 in = 0.1129848290276167 N⋅m
    kilogram force-meter kgf⋅m ≡ g0 × N × m = 9.80665 N⋅m
    newton-metre (SI unit) N⋅m ≡ N × m = kg⋅m2/s2 = 1 N⋅m

    Energy – MultiVerse Converter – Calculator

    See also: Units of energy
    Energy
    Name of unit Symbol Definition Relation to SI units
    barrel of oil equivalent boe ≈ 5.8×106 BTU59 °F ≈ 6.12×109 J
    British thermal unit (ISO) BTUISO ≡ 1.0545×103 J = 1.0545×103 J
    British thermal unit (International Table) BTUIT = 1.05505585262×103 J
    British thermal unit (mean) BTUmean ≈ 1.05587×103 J
    British thermal unit (thermochemical) BTUth ≈ 1.054350×103 J
    British thermal unit (39 °F) BTU39 °F ≈ 1.05967×103 J
    British thermal unit (59 °F) BTU59 °F ≡ 1.054804×103 J = 1.054804×103 J
    British thermal unit (60 °F) BTU60 °F ≈ 1.05468×103 J
    British thermal unit (63 °F) BTU63 °F ≈ 1.0546×103 J
    calorie (International Table) calIT ≡ 4.1868 J = 4.1868 J
    calorie (mean) calmean 1⁄100 of the energy required to warm one gram of air-free water from 0 °C to 100 °C at a pressure of 1 atm ≈ 4.19002 J
    calorie (thermochemical) calth ≡ 4.184 J = 4.184 J
    Calorie (US; FDA) Cal ≡ 1 kcal = 1000 cal = 4184 J
    calorie (3.98 °C) cal3.98 °C ≈ 4.2045 J
    calorie (15 °C) cal15 °C ≡ 4.1855 J = 4.1855 J
    calorie (20 °C) cal20 °C ≈ 4.1819 J
    Celsius heat unit (International Table) CHUIT ≡ 1 BTUIT × 1 K/°R = 1.899100534716×103 J
    cubic centimetre of atmosphere; standard cubic centimetre cc atm; scc ≡ 1 atm × 1 cm3 = 0.101325 J
    cubic foot of atmosphere; standard cubic foot cu ft atm; scf ≡ 1 atm × 1 ft3 = 2.8692044809344×103 J
    cubic foot of natural gas ≡ 1000 BTUIT = 1.05505585262×106 J
    cubic yard of atmosphere; standard cubic yard cu yd atm; scy ≡ 1 atm × 1 yd3 = 77.4685209852288×103 J
    electronvolt eV ≡ e × 1 V ≡ 1.602176634×10−19 J
    erg (CGS unit) erg ≡ 1 g⋅cm2/s2 = 10−7 J
    foot-pound force ft lbf ≡ g0 × 1 lb × 1 ft = 1.3558179483314004 J
    foot-poundal ft pdl ≡ 1 lb⋅ft2/s2 = 4.21401100938048×10−2 J
    gallon-atmosphere (imperial) imp gal atm ≡ 1 atm × 1 gal (imp) = 460.63256925 J
    gallon-atmosphere (US) US gal atm ≡ 1 atm × 1 gal (US) = 383.5568490138 J
    hartreeatomic unit of energy Eh ≡ me⋅α2⋅c2 (= 2 Ry) ≈ 4.359744×10−18 J
    horsepower-hour hp⋅h ≡ 1 hp × 1 h = 2.684519537696172792×106 J
    inch-pound force in lbf ≡ g0 × 1 lb × 1 in = 0.1129848290276167 J
    joule (SI unit) J The work done when a force of one newton moves the point of its application a distance of one metre in the direction of the force.[31] = 1 J = 1 m⋅N = 1 kg⋅m2/s2 = 1 C⋅V = 1 W⋅s
    kilocalorie; large calorie kcal; Cal ≡ 1000 calIT = 4.1868×103 J
    kilowatt-hour; Board of Trade Unit kW⋅h; B.O.T.U. ≡ 1 kW × 1 h = 3.6×106 J
    litreatmosphere l atm; sl ≡ 1 atm × 1 L = 101.325 J
    quad ≡ 1015 BTUIT = 1.05505585262×1018 J
    rydberg Ry ≡ Rc ≈ 2.179872×10−18 J
    therm (E.C.) ≡ 100000 BTUIT = 105.505585262×106 J
    therm (US) ≡ 100000 BTU59 °F = 105.4804×106 J
    thermie th ≡ 1 McalIT = 4.1868×106 J
    tonne of coal equivalent TCE ≡ 7 Gcalth = 29.288×109 J
    tonne of oil equivalent toe ≡ 10 GcalIT = 41.868×109 J
    ton of TNT tTNT ≡ 1 Gcalth = 4.184×109 J
    watt-hour W⋅h ≡ 1 W × 1 h = 3.6×103 J
    watt-second W⋅s ≡ 1 J = 1×100 J

    Power or heat flow rate – MultiVerse Converter – Calculator

    Power
    Name of unit Symbol Definition Relation to SI units
    atmosphere-cubic centimetre per minute atm ccm[citation needed] ≡ 1 atm × 1 cm3/min = 1.68875×10−3 W
    atmosphere-cubic centimetre per second atm ccs[citation needed] ≡ 1 atm × 1 cm3/s = 0.101325 W
    atmosphere-cubic foot per hour atm cfh[citation needed] ≡ 1 atm × 1 cu ft/h = 0.79700124704 W
    atmosphere-cubic foot per minute atm cfm[citation needed] ≡ 1 atm × 1 cu ft/min = 47.82007468224 W
    atmosphere-cubic foot per second atm cfs[citation needed] ≡ 1 atm × 1 cu ft/s = 2.8692044809344×103 W
    BTU (International Table) per hour BTUIT/h ≡ 1 BTUIT/h ≈ 0.293071 W
    BTU (International Table) per minute BTUIT/min ≡ 1 BTUIT/min ≈ 17.584264 W
    BTU (International Table) per second BTUIT/s ≡ 1 BTUIT/s = 1.05505585262×103 W
    calorie (International Table) per second calIT/s ≡ 1 calIT/s = 4.1868 W
    erg per second erg/s ≡ 1 erg/s = 10−7 W
    foot-pound-force per hour ft⋅lbf/h ≡ 1 ft lbf/h ≈ 3.766161×10−4 W
    foot-pound-force per minute ft⋅lbf/min ≡ 1 ft lbf/min = 2.259696580552334×10−2 W
    foot-pound-force per second ft⋅lbf/s ≡ 1 ft lbf/s = 1.3558179483314004 W
    horsepower (boiler) hp ≈ 34.5 lb/h × 970.3 BTUIT/lb ≈ 9809.5 W[34]
    horsepower (European electrical) hp ≡ 75 kp⋅m/s = 736 W[citation needed]
    horsepower (electrical) hp ≡ 746 W = 746 W[34]
    horsepower (mechanical) hp ≡ 550 ft⋅lbf/s[34] = 745.69987158227022 W
    horsepower (metric) hp or PS ≡ 75 m⋅kgf/s = 735.49875 W[34]
    litre-atmosphere per minute L·atm/min ≡ 1 atm × 1 L/min = 1.68875 W
    litre-atmosphere per second L·atm/s ≡ 1 atm × 1 L/s = 101.325 W
    lusec lusec ≡ 1 L·µmHg/s [16] ≈ 1.333×10−4 W
    poncelet p ≡ 100 m⋅kgf/s = 980.665 W
    square foot equivalent direct radiation sq ft EDR ≡ 240 BTUIT/h ≈ 70.337057 W
    ton of air conditioning ≡ 2000 lb of ice melted / 24 h ≈ 3504 W
    ton of refrigeration (imperial) ≡ 2240 lb × iceIT / 24 h: iceIT = 144 °F × 2326 J/kg⋅°F ≈ 3.938875×103 W
    ton of refrigeration (IT) ≡ 2000 lb × iceIT / 24 h: iceIT = 144 °F × 2326 J/kg⋅°F ≈ 3.516853×103 W
    watt (SI unit) W The power which in one second of time gives rise to one joule of energy.[31] = 1 W = 1 J/s = 1 N⋅m/s = 1 kg⋅m2/s3

    Action – MultiVerse Converter – Calculator

    Action
    Name of unit Symbol Definition Relation to SI units
    atomic unit of action au ≡  ≡ ⁄2π ≈ 1.05457168×10−34 J⋅s[35]

    Dynamic viscosity – MultiVerse Converter – Calculator

    Dynamic viscosity
    Name of unit Symbol Definition Relation to SI units
    pascal second (SI unit) Pa⋅s ≡ N⋅s/m2, kg/(m⋅s) = 1 Pa⋅s
    poise (CGS unit) P ≡ 1 barye⋅s = 0.1 Pa⋅s
    pound per foot hour lb/(ft⋅h) ≡ 1 lb/(ft⋅h) ≈ 4.133789×10−4 Pa⋅s
    pound per foot second lb/(ft⋅s) ≡ 1 lb/(ft⋅s) ≈ 1.488164 Pa⋅s
    pound-force second per square foot lbf⋅s/ft2 ≡ 1 lbf⋅s/ft2 ≈ 47.88026 Pa⋅s
    pound-force second per square inch lbf⋅s/in2 ≡ 1 lbf⋅s/in2 ≈ 6894.757 Pa⋅s

    Kinematic viscosity – MultiVerse Converter – Calculator

    Kinematic viscosity
    Name of unit Symbol Definition Relation to SI units
    square foot per second ft2/s ≡ 1 ft2/s = 0.09290304 m2/s
    square metre per second (SI unit) m2/s ≡ 1 m2/s = 1 m2/s
    stokes (CGS unit) St ≡ 1 cm2/s = 10−4 m2/s

    Electric current – MultiVerse Converter – Calculator

    Electric current
    Name of unit Symbol Definition Relation to SI units
    ampere (SI base unit) A ≡ one coulomb of charge going past a given point per second.[36] (SI base unit)
    electromagnetic unit; abampere (CGS unit) abamp ≘ 10 A = 10 A
    esu per second; statampere (CGS unit) esu/s ≘ (10 A⋅cm/s) / c ≈ 3.335641×10−10 A

    Electric charge – MultiVerse Converter – Calculator

    Electric charge
    Name of unit Symbol Definition Relation to SI units
    abcoulomb; electromagnetic unit (CGS unit) abC; emu ≘ 10 C = 10 C
    atomic unit of charge au ≡ e = 1.602176634×10−19 C
    coulomb C ≡ charge of exactly 1/(1.602176634×10−19) elementary charges[36] = 1 C = 1 A⋅s
    faraday F ≡ 1 mol × NAe ≈ 96485.3383 C
    milliampere hour mA⋅h ≡ 0.001 A × 1 h = 3.6 C
    statcoulombfranklin; electrostatic unit (CGS unit) statC; Fr; esu ≘ (10 A⋅cm) / c ≈ 3.335641×10−10 C

    Electric dipole – MultiVerse Converter – Calculator

    Electric dipole
    Name of unit Symbol Definition Relation to SI units
    atomic unit of electric dipole moment ea0 ≈ 8.47835281×10−30 C⋅m[37]
    coulomb-meter C⋅m = 1 C⋅m
    debye D ≡ 10−10 esu⋅Å ≘ 3.33564095×10−30 C⋅m[38]

    Electromotive force, electric potential difference

    Voltage, electromotive force
    Name of unit Symbol Definition Relation to SI units
    abvolt (CGS unit) abV ≘ 10−8 V = 10−8 V
    statvolt (CGS unit) statV ≘ c⋅(1 μJ/A⋅m) = 299.792458 V
    volt (SI unit) V The difference in electric potential across two points along a conducting wire carrying one ampere of constant current when the power dissipated between the points equals one watt.[31] = 1 V = 1 W/A = 1 kg⋅m2/(A⋅s3) = 1 J/C

    Electrical resistance

    Electrical resistance
    Name of unit Symbol Definition Relation to SI units
    ohm (SI unit) Ω The resistance between two points in a conductor when one volt of electric potential difference, applied to these points, produces one ampere of current in the conductor.[31] = 1 Ω = 1 V/A = 1 kg⋅m2/(A2⋅s3)

    Capacitance

    Capacitor‘s ability to store charge
    Name of unit Symbol Definition Relation to SI units
    farad (SI unit) F The capacitance between two parallel plates that results in one volt of potential difference when charged by one coulomb of electricity.[31] = 1 F = 1 C/V = 1 A2⋅s4/(kg⋅m2)

    Magnetic flux

    Magnetic flux
    Name of unit Symbol Definition Relation to SI units
    maxwell (CGS unit) Mx ≘ 10−8 Wb[34] = 10−8 Wb
    weber (SI unit) Wb Magnetic flux which, linking a circuit of one turn, would produce in it an electromotive force of 1 volt if it were reduced to zero at a uniform rate in 1 second.[31] = 1 Wb = 1 V⋅s = 1 kg⋅m2/(A⋅s2)

    Magnetic flux density

    What physicists call magnetic field is called magnetic flux density by electrical engineers and magnetic induction by applied mathematicians and electrical engineers.
    Name of unit Symbol Definition Relation to SI units
    gauss (CGS unit) G ≡ Mx/cm2 ≘ 10−4 T = 10−4 T [39]
    tesla (SI unit) T ≡ Wb/m2 = 1 T = 1 Wb/m2 = 1 kg/(A⋅s2)

    Inductance – MultiVerse Converter – Calculator

    Inductance
    Name of unit Symbol Definition Relation to SI units
    henry (SI unit) H The inductance of a closed circuit that produces one volt of electromotive force when the current in the circuit varies at a uniform rate of one ampere per second.[31] = 1 H = 1 Wb/A = 1 kg⋅m2/(A⋅s)2

    Temperature – MultiVerse Converter – Calculator

    Temperature
    Name of unit Symbol Definition Relation to SI units
    degree Celsius °C [°C] ≡ [K] − 273.15 [K] ≡ [°C] + 273.15
    degree Delisle °De [K] = 373.15 − [°De] × 2⁄3
    degree Fahrenheit °F [°F] ≡ [°C] × 9⁄5 + 32 [K] ≡ ([°F] + 459.67) × 5⁄9
    degree Newton °N [K] = [°N] × 100⁄33 + 273.15
    degree Rankine °R; [°R] ≡ [K] × 9⁄5 [K] ≡ [°R] × 5/9
    degree Réaumur °Ré [K] = [°Ré] × 5⁄4 + 273.15
    degree Rømer °Rø [K] = ([°Rø] − 7.5) × 40⁄21 + 273.15
    Regulo Gas Mark GM [°F] ≡ [GM] × 25 + 250 [K] ≡ [GM] × 125⁄9 + 394.26
    kelvin (SI base unit) K ≡ change in the thermodynamic temperature T that results in a change of thermal energy kT by 1.380 649 × 10−23 J.[40] (SI base unit)

    Information entropy

    Information entropy
    Name of unit Symbol Definition Relation to SI units Relation to bits
    natural unit of information; nit; nepit nat
    shannon Sh ≡ ln(2) × nat ≈ 0.693147 nat = 1 bit
    hartley; ban Hart; ban ≡ ln(10) × nat ≈ 2.302585 nat
    bit bit; b = 1 bit
    nibble ≡ 4 bits = 22 bit
    byte B ≡ 8 bits = 23 bit
    kilobyte (decimal) kB ≡ 1000 B = 8000 bit
    kibibyte (kilobyte) KiB ≡ 1024 B = 213 bit = 8192 bit

    Modern standards (such as ISO 80000) prefer the shannon to the bit as a unit for a quantity of information entropy, whereas the (discrete) storage space of digital devices is measured in bits. Thus, uncompressed redundant data occupy more than one bit of storage per shannon of information entropy. The multiples of a bit listed above are usually used with this meaning.

    Luminous intensity

    The candela is the preferred nomenclature for the SI unit.

    Luminous intensity
    Name of unit Symbol Definition Relation to SI units
    candela (SI base unit) cd The luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×1012 hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.[36] (SI base unit)
    candlepower (new) cp ≡ cd The use of candlepower as a unit is discouraged due to its ambiguity. = 1 cd
    candlepower (old, pre-1948) cp Varies and is poorly reproducible.[41] Approximately 0.981 cd.[16] ≈ 0.981 cd

    Luminance

    Luminance
    Name of unit Symbol Definition Relation to SI units
    candela per square foot cd/ft2 ≡ cd/ft2 ≈ 10.763910417 cd/m2
    candela per square inch cd/in2 ≡ cd/in2 ≈ 1550.0031 cd/m2
    candela per square metre (SI unit); nit (deprecated[16]) cd/m2 ≡ cd/m2 = 1 cd/m2
    footlambert fL ≡ (1/π) cd/ft2 ≈ 3.4262590996 cd/m2
    lambert L ≡ (104/π) cd/m2 ≈ 3183.0988618 cd/m2
    stilb (CGS unit) sb ≡ 104 cd/m2 = 104 cd/m2

    Luminous flux

    Luminous flux
    Name of unit Symbol Definition Relation to SI units
    lumen (SI unit) lm The luminous flux of a source that emits monochromatic radiation of frequency 540×1012 hertz and that has a radiant flux of 1/683 watt.[36] = 1 lm = 1 cd⋅sr

    Illuminance

    Illuminance
    Name of unit Symbol Definition Relation to SI units
    footcandle; lumen per square foot fc ≡ lm/ft2 = 10.763910417 lx
    lumen per square inch lm/in2 ≡ lm/in2 ≈ 1550.0031 lx
    lux (SI unit) lx ≡ lm/m2 = 1 lx = 1 lm/m2
    phot (CGS unit) ph ≡ lm/cm2 = 104 lx

    Radiation – MultiVerse Converter – Calculator

    Radiation – source activity

    Radioactivity
    Name of unit Symbol Definition Relation to SI units
    becquerel (SI unit) Bq ≡ Number of disintegrations per second = 1 Bq = 1/s
    curie Ci ≡ 3.7×1010 Bq[42] = 3.7×1010 Bq
    rutherford (H) Rd ≡ 1 MBq = 106 Bq

    Although becquerel (Bq) and hertz (Hz) both ultimately refer to the same SI base unit (s−1), Hz is used only for periodic phenomena (i.e. repetitions at regular intervals), and Bq is only used for stochastic processes (i.e. at random intervals) associated with radioactivity.[43]

    Radiation – exposure

    Radiation – exposure
    Name of unit Symbol Definition Relation to SI units
    roentgen R 1 R ≡ 2.58×10−4 C/kg[34] = 2.58×10−4 C/kg

    The roentgen is not an SI unit and the NIST strongly discourages its continued use.[44]

    Radiation – absorbed dose

    Radiation – absorbed dose
    Name of unit Symbol Definition Relation to SI units
    gray (SI unit) Gy ≡ 1 J/kg[45] = 1 Gy = 1 J/kg = 1 m2⋅s2
    rad rad ≡ 0.01 Gy[34] = 0.01 Gy

    Radiation – equivalent dose

    Radiation – equivalent dose
    Name of unit Symbol Definition Relation to SI units
    Röntgen equivalent man rem ≡ 0.01 Sv = 0.01 Sv
    sievert (SI unit) Sv ≡ 1 J/kg[43] = 1 Sv = 1 J/kg = 1 m2⋅s2

    Although the definitions for sievert (Sv) and gray (Gy) would seem to indicate that they measure the same quantities, this is not the case. The effect of receiving a certain dose of radiation (given as Gy) is variable and depends on many factors, thus a new unit was needed to denote the biological effectiveness of that dose on the body; this is known as the equivalent dose and is shown in Sv. The general relationship between absorbed dose and equivalent dose can be represented as

    H = Q ⋅ D

    where H is the equivalent dose, D is the absorbed dose, and Q is a dimensionless quality factor. Thus, for any quantity of D measured in Gy, the numerical value for H measured in Sv may be different.[46]

    Notes

    1. ^ The technical definition of tropical year is the period of time for the ecliptic longitude of the Sun to increase 360 degrees. (Urban & Seidelmann 2013, Glossary, s.v. year, tropical)

    References – MultiVerse Converter – Calculator

    1. ^ jobs (September 14, 2012). “The astronomical unit gets fixed : Nature News & Comment”. Nature. Nature.com. doi:10.1038/nature.2012.11416S2CID 123424704. Retrieved August 31, 2013.
    2. ^ “NIST Reference on Constants, Units, and Uncertainty.”(2010). National Institute of Standards and Technology. Retrieved October 17, 2014.
    3. Jump up to:a b c d e “NIST – National Institute of Standards and Technology”. NIST.
    4. Jump up to:a b c d e f g h i j k l m n Lide, D. (Ed.). (1990). Handbook of Chemistry and Physics (71st ed). Boca Raton, FL: CRC Press. Section 1.
    5. Jump up to:a b National Bureau of Standards. (June 30, 1959). Refinement of values for the yard and the pound. Federal Register, viewed September 20, 2006 at National Geodetic Survey web site.
    6. ^ “International Astronomical Union – IAU”. www.iau.org.
    7. ^ Klein, Herbert Arthur. (1988). The Science of Measurement: a Historical Survey. Mineola, NY: Dover Publications 0-4862-5839-4.
    8. Jump up to:a b c The International System of Units, Section 2.1 (8 ed.), Bureau International des Poids et Mesures, 2006, archived from the original on October 1, 2009, retrieved August 26, 2009
    9. ^ International System of Units, Archived August 21, 2008, at the Wayback Machine 8th ed. (2006), Bureau International des Poids et Mesures, Section 4.1 Table 8.
    10. ^ Cox, Arthur N., ed. (2000). Allen’s Astrophysical Quantities (4th ed.). New York: AIP Press / Springer. Bibcode:2000asqu.book…..CISBN 0387987460.
    11. ^ Binney, James; Tremaine, Scott (2008). Galactic Dynamics (2nd ed.). Princeton, NJ: Princeton University Press. Bibcode:2008gady.book…..BISBN 978-0-691-13026-2.
    12. ^ P. Kenneth Seidelmann, Ed. (1992). Explanatory Supplement to the Astronomical Almanac. Sausalito, CA: University Science Books. p. 716 and s.v. parsec in Glossary.
    13. Jump up to:a b c Whitelaw, Ian. (2007). A Measure of All Things: The Story of Man and Measurement. New York: Macmillan 0-312-37026-1. p. 152.
    14. Jump up to:a b De Vinne, Theodore Low (1900). The practice of typography: a treatise on the processes of type-making, the point system, the names, sizes, styles and prices of plain printing types 2nd ed. New York: The Century Co. p. 142–150.
    15. ^ Pasko, Wesley Washington (1894). American dictionary of printing and bookmaking. (1894). New York: Howard Lockwood. p. 521.
    16. Jump up to:a b c d e f g h i Rowlett, Russ (2005), How Many? A Dictionary of Units of Measurement
    17. ^ Thompson, A. and Taylor, B.N. (2008). Guide for the Use of the International System of Units (SI). National Institute of Standards and Technology Special Publication 811. p. 57.
    18. Jump up to:a b c d e US Code of Federal Regulations, Title 21, Section 101.9, Paragraph (b)(5)(viii), archived from the original on August 13, 2009, retrieved August 29, 2009
    19. ^ Barry N. Taylor, Ed.,NIST Special Publication 330: The International System of Units (SI) (2001 Edition), Washington: US Government Printing Office, 43,”The 12th Conference Generale des Poids et Mesures (CGPM)…declares that the word “litre” may be employed as a special name for the cubic decimetre”.
    20. ^ CODATA Value: atomic unit of mass. (2010). National Institute of Standards and Technology. Retrieved 29 May 2015.
    21. ^ The Swiss Federal Office for Metrology gives Zentner on a German language web page “Metas: Masseinheiten – SI-Einheiten”. Archived from the original on 2006-09-28. Retrieved 2006-10-09. and quintal on the English translation of that page “OFMET: Units of measure – SI units”. Archived from the original on 2001-03-09. Retrieved 2006-10-09.; the unit is marked “spécifiquement suisse !”
    22. Jump up to:a b Pedersen O. (1983). “Glossary” in Coyne, G., Hoskin, M., and Pedersen, O. Gregorian Reform of the Calendar: Proceedings of the Vatican Conference to Commemorate its 400th Anniversary. Vatican Observatory. Available from Astrophysics Data System.
    23. ^ Richards, E.G. (1998), Mapping Time, Oxford University Press, pp. 94–95ISBN 0-19-850413-6
    24. ^ Steel, Duncan (2000), Marking Time, John Wiley & Sons, p. 46ISBN 0-471-29827-1
    25. ^ “CODATA Value: Planck time”. physics.nist.gov. Retrieved 2018-06-20.
    26. Jump up to:a b Richards, E. G. (2013). “Calendars” in S. E. Urban & P. K. Seidelmann, eds. Explanatory Supplement to the Astronomical Almanac. Mill Valley, CA: University Science Books.
    27. ^ Richards, E. G. (2013). “Calendars” in S. E. Urban & P. K. Seidelmann, eds. Explanatory Supplement to the Astronomical Almanac. Mill Valley, CA: University Science Books. p. 587.
    28. ^ Until 1970 the UK Admiralty (and until 1954 the US) used other definitions of the nautical mile and hence the knot. See also #Length
    29. ^ Tom Benson. (2010.) “Mach Number” Archived 2006-04-10 at the Wayback Machine in Beginner’s Guide to Aeronautics. NASA.
    30. ^ CODATA Value: atomic unit of force. (2006). National Institute of Standards and Technology. Retrieved September 14, 2008.
    31. Jump up to:a b c d e f g h Comité International des Poids et Mesures, Resolution 2, 1946, retrieved August 26, 2009
    32. Jump up to:a b c d e f g h i j k l m n o p Barry N. Taylor, (April 1995), Guide for the Use of the International System of Units (SI) (NIST Special Publication 811), Washington, DC: US Government Printing Office, pp. 57–68.
    33. ^ Barry N. Taylor, (April 1995), Guide for the Use of the International System of Units (SI) (NIST Special Publication 811), Washington, DC: US Government Printing Office, p. 5.
    34. Jump up to:a b c d e f g “NIST Guide to SI Units, Appendix B.9”, Nist, 2 July 2009, retrieved August 27, 2009
    35. ^ International System of Units, Archived July 16, 2012, at the Wayback Machine 8th ed. (2006), Bureau International des Poids et Mesures, Section 4.1 Table 7.
    36. Jump up to:a b c d “SI brochure (2019)” (PDF). SI Brochure. BIPM. p. 132. Retrieved May 23, 2019.
    37. ^ The NIST Reference on Constants, Units, and Uncertainty, 2006, retrieved August 26, 2009
    38. ^ Robert G. Mortimer Physical chemistry, Academic Press, 2000 ISBN 0-12-508345-9, page 677
    39. ^ Standard for the Use of the International System of Units (SI): The Modern Metric System IEEE/ASTM SI 10-1997. (1997). New York and West Conshohocken, PA: Institute of Electrical and Electronics Engineers and American Society for Testing and Materials. Tables A.1 through A.5.
    40. ^ “Mise en pratique” (PDF). BIPM.
    41. ^ The NIST Reference on Constants, Units, and Uncertainty, retrieved August 28, 2009
    42. ^ Ambler Thompson & Barry N. Taylor. (2008). Guide for the Use of the International System of Units (SI). Special Publication 811. Gaithersburg, MD: National Institute of Standards and Technology. p. 10.
    43. Jump up to:a b The International System of Units, Section 2.2.2., Table 3 (8 ed.), Bureau International des Poids et Mesures, 2006, archived from the original on June 18, 2007, retrieved August 27, 2009
    44. ^ “The NIST Guide to the SI (Special Publication 811), section 5.2”, Nist, 2008, retrieved August 27, 2009
    45. ^ Ambler Thompson & Barry N. Taylor. (2008). Guide for the Use of the International System of Units (SI). Special Publication 811. Gaithersburg, MD: National Institute of Standards and Technology. p. 5.
    46. ^ Comité international des poids et mesures, 2002, Recommendation 2, retrieved August 27, 2009

    Conversion of units

    Conversion of units is the conversion of the unit of measurement in which a quantity is expressed, typically through a multiplicative conversion factor that changes the unit without changing the quantity. This is also often loosely taken to include replacement of a quantity with a corresponding quantity that describes the same physical property.

    Unit conversion is often easier within a metric system such as the SI than in others, due to the system’s coherence and its metric prefixes that act as power-of-10 multipliers.

    Overview

    The definition and choice of units in which to express a quantity may depend on the specific situation and the intended purpose. This may be governed by regulation, contracttechnical specifications or other published standards. Engineering judgment may include such factors as:

    For some purposes, conversions from one system of units to another are needed to be exact, without increasing or decreasing the precision of the expressed quantity. An adaptive conversion may not produce an exactly equivalent expression. Nominal values are sometimes allowed and used.

    Factor–label method

    Further information: Dimensional analysis

    The factor–label method, also known as the unit–factor method or the unity bracket method,[1] is a widely used technique for unit conversions that uses the rules of algebra.[2][3][4]

    The factor–label method is the sequential application of conversion factors expressed as fractions and arranged so that any dimensional unit appearing in both the numerator and denominator of any of the fractions can be cancelled out until only the desired set of dimensional units is obtained. For example, 10 miles per hour can be converted to metres per second by using a sequence of conversion factors as shown below:

    10 mi1 h×1609.344 m1 mi×1 h3600 s=4.4704 ms.

    Each conversion factor is chosen based on the relationship between one of the original units and one of the desired units (or some intermediary unit), before being rearranged to create a factor that cancels out the original unit. For example, as “mile” is the numerator in the original fraction and 1 mi=1609.344 m, “mile” will need to be the denominator in the conversion factor. Dividing both sides of the equation by 1 mile yields 1 mi1 mi=1609.344 m1 mi, which when simplified results in the dimensionless 1=1609.344 m1 mi. Because of the identity property of multiplication, multiplying any quantity (physical or not) by the dimensionless 1 does not change that quantity.[5] Once this and the conversion factor for seconds per hour have been multiplied by the original fraction to cancel out the units mile and hour, 10 miles per hour converts to 4.4704 metres per second.

    As a more complex example, the concentration of nitrogen oxides (NOx) in the flue gas from an industrial furnace can be converted to a mass flow rate expressed in grams per hour (g/h) of NOx by using the following information as shown below:

    NOx concentration
    = 10 parts per million by volume = 10 ppmv = 10 volumes/106 volumes
    NOx molar mass
    = 46 kg/kmol = 46 g/mol
    Flow rate of flue gas
    = 20 cubic metres per minute = 20 m3/min
    The flue gas exits the furnace at 0 °C temperature and 101.325 kPa absolute pressure.
    The molar volume of a gas at 0 °C temperature and 101.325 kPa is 22.414 m3/kmol.
    1000 g NO�1kg NO�×46 kg NO�1 kmol NO�×1 kmol NO�22.414 m3 NO�×10 m3 NO�106 m3 gas×20 m3 gas1 minute×60 minute1 hour=24.63 g NO�hour

    After cancelling any dimensional units that appear both in the numerators and the denominators of the fractions in the above equation, the NOx concentration of 10 ppmv converts to mass flow rate of 24.63 grams per hour.

    Checking equations that involve dimensions

    The factor–label method can also be used on any mathematical equation to check whether or not the dimensional units on the left hand side of the equation are the same as the dimensional units on the right hand side of the equation. Having the same units on both sides of an equation does not ensure that the equation is correct, but having different units on the two sides (when expressed in terms of base units) of an equation implies that the equation is wrong.

    For example, check the universal gas law equation of PV = nRT, when:

    • the pressure P is in pascals (Pa)
    • the volume V is in cubic metres (m3)
    • the amount of substance n is in moles (mol)
    • the universal gas constant R is 8.3145 Pa⋅m3/(mol⋅K)
    • the temperature T is in kelvins (K)
    Pa⋅m3=mol1×Pa⋅m3mol K×K1

    As can be seen, when the dimensional units appearing in the numerator and denominator of the equation’s right hand side are cancelled out, both sides of the equation have the same dimensional units. Dimensional analysis can be used as a tool to construct equations that relate non-associated physico-chemical properties. The equations may reveal undiscovered or overlooked properties of matter, in the form of left-over dimensions – dimensional adjusters – that can then be assigned physical significance. It is important to point out that such ‘mathematical manipulation’ is neither without prior precedent, nor without considerable scientific significance. Indeed, the Planck constant, a fundamental physical constant, was ‘discovered’ as a purely mathematical abstraction or representation that built on the Rayleigh–Jeans law for preventing the ultraviolet catastrophe. It was assigned and ascended to its quantum physical significance either in tandem or post mathematical dimensional adjustment – not earlier.

    Limitations

    The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 (ratio scale in Stevens’s typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees Celsius and kelvins, there is a constant difference rather than a constant ratio, while between degrees Celsius and degrees Fahrenheit there is neither a constant difference nor a constant ratio. There is, however, an affine transform (�↦��+�, rather than a linear transform �↦��) between them.

    For example, the freezing point of water is 0 °C and 32 °F, and a 5 °C change is the same as a 9 °F change. Thus, to convert from units of Fahrenheit to units of Celsius, one subtracts 32 °F (the offset from the point of reference), divides by 9 °F and multiplies by 5 °C (scales by the ratio of units), and adds 0 °C (the offset from the point of reference). Reversing this yields the formula for obtaining a quantity in units of Celsius from units of Fahrenheit; one could have started with the equivalence between 100 °C and 212 °F, which yields the same formula.

    Hence, to convert the numerical quantity value of a temperature T[F] in degrees Fahrenheit to a numerical quantity value T[C] in degrees Celsius, this formula may be used:

    T[C] = (T[F] − 32) × 5/9.

    To convert T[C] in degrees Celsius to T[F] in degrees Fahrenheit, this formula may be used:

    T[F] = (T[C] × 9/5) + 32.

    Example

    Starting with:

    �=��×[�]�

    replace the original unit [�]� with its meaning in terms of the desired unit [�]�, e.g. if [�]�=���×[�]�, then:

    �=��×(���×[�]�)=(��×���)×[�]�

    Now �� and ��� are both numerical values, so just calculate their product.

    Or, which is just mathematically the same thing, multiply Z by unity, the product is still Z:

    �=��×[�]�×(���×[�]�/[�]�)

    For example, you have an expression for a physical value Z involving the unit feet per second ([�]�) and you want it in terms of the unit miles per hour ([�]�):

    1. Find facts relating the original unit to the desired unit:
      1 mile = 5280 feet and 1 hour = 3600 seconds
    2. Next use the above equations to construct a fraction that has a value of unity and that contains units such that, when it is multiplied with the original physical value, will cancel the original units:1=1mi5280ftand1=3600s1h
    3. Last, multiply the original expression of the physical value by the fraction, called a conversion factor, to obtain the same physical value expressed in terms of a different unit. Note: since valid conversion factors are dimensionless and have a numerical value of one, multiplying any physical quantity by such a conversion factor (which is 1) does not change that physical quantity.52.8fts=52.8fts1mi5280ft3600s1h=52.8×36005280mi/h=36mi/h

    Or as an example using the metric system, you have a value of fuel economy in the unit litres per 100 kilometres and you want it in terms of the unit microlitres per metre:

    9L100km=9L100km1000000�L1L1km1000m=9×1000000100×1000�L/m=90�L/m

    Calculation involving non-SI Units

    In the cases where non-SI units are used, the numerical calculation of a formula can be done by first working out the factor, and then plug in the numerical values of the given/known quantities.

    For example, in the study of Bose–Einstein condensate,[6] atomic mass m is usually given in daltons, instead of kilograms, and chemical potential μ is often given in the Boltzmann constant times nanokelvin. The condensate’s healing length is given by:

    �=ℏ2��.

    For a 23Na condensate with chemical potential of (the Boltzmann constant times) 128 nK, the calculation of healing length (in micrometres) can be done in two steps:

    Calculate the factor

    Assume that �=1Da,�=�B⋅1nK, this gives

    �=ℏ2��=15.574�m,

    which is our factor.

    Calculate the numbers

    Now, make use of the fact that �∝1��. With �=23Da,�=128�B⋅nK, �=15.57423⋅128μm=0.287μm.

    This method is especially useful for programming and/or making a worksheet, where input quantities are taking multiple different values; For example, with the factor calculated above, it is very easy to see that the healing length of 174Yb with chemical potential 20.3 nK is �=15.574174⋅20.3μm=0.262μm.

    Software tools

    There are many conversion tools. They are found in the function libraries of applications such as spreadsheets databases, in calculators, and in macro packages and plugins for many other applications such as the mathematical, scientific and technical applications.

    There are many standalone applications that offer the thousands of the various units with conversions. For example, the free software movement offers a command line utility GNU units for Linux and Windows. The Unified Code for Units of Measure is also a popular option.

    See also

    Notes and references[edit]

    1. ^ Béla Bodó; Colin Jones (26 June 2013). Introduction to Soil Mechanics. John Wiley & Sons. pp. 9–. ISBN 978-1-118-55388-6.
    2. ^ Goldberg, David (2006). Fundamentals of Chemistry (5th ed.). McGraw-Hill. ISBN 978-0-07-322104-5.
    3. ^ Ogden, James (1999). The Handbook of Chemical Engineering. Research & Education Association. ISBN 978-0-87891-982-6.
    4. ^ “Dimensional Analysis or the Factor Label Method”. Mr Kent’s Chemistry Page.
    5. ^ “Identity property of multiplication”. Retrieved 2015-09-09.
    6. ^ Foot, C. J. (2005). Atomic physics. Oxford University Press. ISBN 978-0-19-850695-9.
    Notes

    External links[edit]

    This article’s use of external links may not follow Wikipedia’s policies or guidelines. Please improve this article by removing excessive or inappropriate external links, and converting useful links where appropriate into footnote references. (July 2023) (Learn how and when to remove this template message)
    Wikibooks has a book on the topic of: FHSST Physics Units:How to Change Units
    Wikivoyage has a travel guide for Metric and Imperial equivalents.
    Current
    General
    Specific
    Natural
    Background
    Metric
    UK/US
    Historic
    Metric
    Europe
    Asia
    Africa
    North America
    South America
    Ancient
    List articles
    Other

    Leave A Comment

    Go to Top